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Abstract
This work considered the construction of canonical polynomials and used 
as basis functions for the approximation of singular multi-order fractional 
integro-differential equations. The idea is that the singular multi-order 
problem is slightly perturbed with shifted Chebyshev polynomials, and the 
resulting equation is collocated at equally spaced interior points. The 
conditions are exponentially fitted with one tau-parameter along with the 
unknown constants. This results into a system of linear algebraic equations 
which are then solved using Gaussian elimination method to obtain the 
unknown parameters involved. Some examples are solved to demonstrate 
the effectiveness of the method.

 Keywords :Canonical Polynomials, Perturbed Collocation Method,
Fractional Integro-Differential Equations.
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Introduction
The behaviour of some physical systems in Science and Engineering are 
governed by singular  multi-order fractional integro-differential equations. 
The equations usually occur as mathematical models, but are later translated 
into functional equations, which can be of the form 

where,                   is the kernel, u is the function to be determined, n ∈ N 
and n −1 ≤ α ≤ n. The main difficulty is that the singularity behaviour occurs 
at t = s.
Singular multi-order fractional integro-differential equation can be used to 
describe elasticity mechanism, heat conduction, Dirichlet problems e.t.c., 
where the need for numerical methods is required in cases the analytical 
solutions are not known. Hence, the attentions of many researchers have 
been drawn towards developing appropriate methods that provide the 
approximate solutions. For instance, Modified Adomian Decomposition 
Methods was developed by Cheney and Kincaid (2008), Kumar and Singh 
(2010), Yahaya and Liu (2008), certain classes of Lane emden type 
equations were solved by Yasir and Zdenek (2012) using the Differential 
Transform Method. Each authors reported that due to the singularity 
behaviour of the problems under consideration, the construction of 
Adomian and Cubic Spline polynomials were difficult to obtain in the 
Modified Adomian Decomposition and Cubic Spline Methods respectively. 
In view of this, Canonical polynomials with the aid of Lanczos and Ortiz 
method are constucted to overcome the drawbacks. Canonical polynomials 
were also used as basic functions in Taiwo et al. (2014), implementing 
standard and perturbed collocation methods to solve first and second orders 
linear integro-differential equations.  Other methods which have been 
considered include the Wavelet method by Wang and Li (2017), in 
Operational matrix was adopted to reduce the nonlinear Volterra integro-
differential equations to a system of algebraic equations; and Collocation 
method by Avipsita et al. (2017), where Bernstein polynomials were 
considered as basis functions; where singular boundary value problems and 
singular initial value problems were solved by the authors respectively. 
Similarly, fractional order Euler functions were constructed to solve 
fractional integro-differential equations in Wang et al. (2018). By and large, 
all  the methods were very efficient. 
The concept of exponential fitting method has been investigated by many 
authors, and have individually come up with the idea describing it as a 
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highly efficient method of solution. For instance, Taiwo (2000) 
investigated the numerical solution of two point boundary value problems 
by the application of the Cubic Spline Collocation Method using 
exponential fitting. Among other authors that have also adopted the 
technique as method of solution are Raptis (1982), Simos (1999), Simos 
(2006), and Daele and Berghe (2007). Thus, in this work, the exponential 
fitting with collocation method is introduced to solve equation (1), 
implementing the constructed canonical polynomials as basis functions.

Definition of Relevant Terms
Definition 1.1: Riemann-Liouville Fractional derivative
Riemann Liouville fractional derivative denoted by D_0^q f(t)is defined as
Follows

Definition 1.3: Chebyshev Polynomials
The Chebyshev polynomials belong to a family of orthogonal 
polynomials in the interval [−1,1]. They are widely utilized for 
their good properties in approximating problems. The Chebyshev 
polynomial of the first kind of degree ndenoted by Tn(x) and valid 
in [−1,1] is defined as
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Methodology

In this section, a general singular multi-order Volterra fractional integro-

differential equation of the form:
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λ and p_i (i≥0) are constant parameters. Also, y(x) and g(x)  are functions 
of x, where x and t are independent variables.
Construction of Canonical Polynomials
Canonical polynomials basis function constructed from equation (7) is 
obtained as follows:
Expanding equation (10) derived from the general singular and multi-
order fractional order integro-differential equations stated in equations (7) 
and (8), gives
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Method of Solution

The perturbed Collocation Method with exponential fitting is considered in 

this section, as a new method to handle singular and multi-order fractional 

integro-differential equations.
Here, an assumed approximate solution of the form:

where, N is the degree of approximation and n is the highest order 
singular and multi-order fractional integro differential equation, 
τ_i,i=1(1)n-1 are the free Tau parameters to be determined.
Hence, equation (23) is further simpli�ied to give
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The y(t) in equation (24) is evaluated by adopting a Taylor series 
expansion of appropriate order.
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Hence, substituting equation (26) into equation (25) and simplifying gives
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Numerical Experiments and Discussion

To illustrate the performance of the presented method, two numerical 

examples are considered in this section.

Problem 1: Consider a singular multi-order fractional integro-differential 

equation of the form
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Tables of Results and Graphical Representations
Table  (i) :

Absolute Errors of Problem 1 for case N = 8

x Exact Solution Approximate Solution Absolute Error

0.000 0.00000000 0.000000000 0.0000000

0.100 0.01010000 0.010099998 1 .1291E −09

0.200 0.04160000 0.041599998 2.0010E −09

0.300 0.09810000 0.098099973 2.6614E −08

0.400 0.18560000 0.185599959 4.0101E −08

0.500

 

0.31250000

 

0.312499957 4.2119E −08

0.600

 

0.48960000

 

0.489599950 4.9991E −08

0.700

 

0.73010000

 

0.730099950 5.0010E −08

0.800

 

1.04960000

 

1.049599581 4.1935E −07

0.900

 

1.46610000

 

1.466099500 4.9989E −07

1.000

 

2.00000000

 

1.999999437 5.6292E −07
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Table (ii):
Absolute Errors of Problem 2 for case N = 10

x

 

Exact Solution

 

Approximate Solution

 

Absolute Error

 

0.000

 

0.0000000

 

0.000000000

 

0.0000000

 

0.100

 

0.0010000

 

0.000999999

 

5.8350E - 11

 

0.200

 

0.0080000

 

0.007999999

 

5.9828E - 10

 

0.300

 

0.0270000

 

0.026999999

 

6.1135E - 10

 

0.400

 

0.0640000

 

0.063999999

 

6.3596E - 10

 

0.500

 

0.1250000

 

0.124999992

 

7.5421E - 09

 

0.600

 

0.2160000

 

0.215999992

 

7.9915E - 09

 

0.700

 

0.3430000

 

0.342999991

 

8.3044E - 09

 

0.800

 

0.5120000

 

0.511999997

 

2.3153E - 09

 

0.900

 

0.7290000

 

0.728999998

 

1.8460E - 09

 

1.000

 

1.0000000

 

0.999999962

 

3.7380E - 08
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Figure 1: The Graph of the Approximate and Exact Solution for Problem 1

Figure 2: The Graph of the Approximate and Exact Solution for Problem 2
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Discussion of Results

It is required to obtain approximate solutions of singular and 

multiorder fractional integro-differential equations due to difficulties in 

obtaining the analytical solutions. Thus, exponentially fitted collocation 

method by canonical polynomials is considered as the method of solution 

in this work, and it is revealed that it's highly efficient and effective in terms 

of convergence as it's clearly seen that the approximate solution converges 

rapidly to the exact solution as the degree of the approximant N increases.
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